پیشنهاد فرادرس

آموزش یادگیری عمیق با Python

دسته بندی ها: آموزش پایتون (Python) ، آموزش های Packtpub ، یادگیری عمیق (Deep Learning) ، هوش مصنوعی

یادگیری عمیق در حال حاضر یکی از بهترین ارائه دهندگان راه حل در مورد مشکلات تشخیص تصویر، تشخیص گفتار، تشخیص چهره و زبان طبیعی با تعداد روزافزون کتابخانه های موجود در پایتون است.  هدف از یادگیری عمیق، توسعه شبکه های عصبی عمیق است. در این دوره با آموزش شبکه های عصبی برای یادگیری عمیق و درک تمایز خودکار،  شبکه های عصبی پیچیده و recurrent، یادگیری تحت نظارت و غیره آشنا می شوید.

سرفصل:

  • معرفی دوره
  • یادگیری عمیق چیست
  • کتابخانه های متن باز برای یادگیری عمیق
  • طبقه بندی داده های MNIST
  • Backpropagation و Theano
  • یادگیری عمیق با Theano
  • بهینه سازی یک مدل ساده در Theano
  • Keras
  • for Loops و شبکه های عصبی Recurrent در Theano
  • لایه های Recurrent
  • لایه های Recurrent در مقابل لایه های پیچشی
  • TensorFlow
  • و غیره
به این نوشته امتیاز دهید 1 2 3 4 5 بدون امتیاز
Deep Learning with Python [Video] Publisher:Packtpub Author:Eder Santana Duration:1 hour and 45 minutes

Dive into the future of data science and implement intelligent systems using deep learning with Python
Deep learning is currently one of the best providers of solutions regarding problems in image recognition, speech recognition, object recognition, and natural language with its increasing number of libraries that are available in Python. The aim of deep learning is to develop deep neural networks by increasing and improving the number of training layers for each network, so that a machine learns more about the data until it’s as accurate as possible. Developers can avail the techniques provided by deep learning to accomplish complex machine learning tasks, and train AI networks to develop deep levels of perceptual recognition. 
Deep learning is the next step to machine learning with a more advanced implementation. Currently, it’s not established as an industry standard, but is heading in that direction and brings a strong promise of being a game changer when dealing with raw unstructured data. Deep learning is currently one of the best providers of solutions regarding problems in image recognition, speech recognition, object recognition, and natural language processing. Developers can avail the benefits of building AI programs that, instead of using hand coded rules, learn from examples how to solve complicated tasks. With deep learning being used by many data scientists, deeper neural networks are evaluated for accurate results.
This course takes you from basic calculus knowledge to understanding backpropagation and its application for training in neural networks for deep learning and understand automatic differentiation. Through the course, we will cover thorough training in convolutional, recurrent neural networks and build up the theory that focuses on supervised learning and integrate into your product offerings such as search, image recognition, and object processing. Also, we will examine the performance of the sentimental analysis model and will conclude with the introduction of Tensorflow.
By the end of this course, you can start working with deep learning right away. This course will make you confident about its implementation in your current work as well as further research.
Style and Approach
An easy-to-follow and structured video tutorial with practical examples and coding with IPython notebooks to help you get to grips with each and every aspect of deep learning.
Released: Monday, February 29, 2016
Head First into Deep Learning
The Course Overview
What Is Deep Learning?
Open Source Libraries for Deep Learning
Deep Learning "Hello World!" Classifying the MNIST Data
Backpropagation and Theano for the Rescue
Introduction to Backpropagation
Understanding Deep Learning with Theano
Optimizing a Simple Model in Pure Theano
Keras – Making Theano Even Easier to Use
Keras Behind the Scenes
Fully Connected or Dense Layers
Convolutional and Pooling Layers
Solving Cats Versus Dogs
Large Scale Datasets, ImageNet, and Very Deep Neural Networks
Loading Pre-trained Models with Theano
Reusing Pre-trained Models in New Applications
"for" Loops and Recurrent Neural Networks in Theano
Theano "for" Loops – the "scan" Module
Recurrent Layers
Recurrent Versus Convolutional Layers
Recurrent Networks –Training a Sentiment Analysis Model for Text
Bonus Challenge and TensorFlow
Bonus Challenge – Automatic Image Captioning
Captioning TensorFlow – Google's Machine Learning Library

پیشنهاد فرادرس

لینک های دانلود حجم فایل: 367.0MB Packtpub Deep Learning with Python [Video]_git.ir.rar